Amplitude and frequency dependence of spike timing: implications for dynamic regulation.

نویسندگان

  • John D Hunter
  • John G Milton
چکیده

The spike-time reliability of motoneurons in the Aplysia buccal motor ganglion was studied as a function of the frequency content and the relative amplitude of the fluctuations in the neuronal input, calculated as the coefficient of variation (CV). Measurements of spike-time reliability to sinusoidal and aperiodic inputs, as well as simulations of a noisy leaky integrate-and-fire neuron stimulated by spike trains drawn from a periodically modulated process, demonstrate that there are three qualitatively different CV-dependent mechanisms that determine reliability: noise-dominated (CV < 0.05 for Aplysia motoneurons) where spike timing is unreliable regardless of frequency content; resonance-dominated (CV approximately 0.05-0.25) where reliability is reduced by removal of input frequencies equal to motoneuron firing rate; and amplitude-dominated (CV >0.35) where reliability depends on input frequencies greater than motoneuron firing rate. In the resonance-dominated regime, changes in the activity of the presynaptic inhibitory interneuron B4/5 alter motoneuron spike-time reliability. The increases or decreases in reliability occur coincident with small changes in motoneuron spiking rate due to changes in interneuron activity. Injection of a hyperpolarizing current into the motoneuron reproduces the interneuron-induced changes in reliability. The rate-dependent changes in reliability can be understood from the phase-locking properties of regularly spiking motoneurons to periodic inputs. Our observations demonstrate that the ability of a neuron to support a spike-time code can be actively controlled by varying the properties of the neuron and its input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Administration of Perinatal Bupropion on the Population Spike Amplitude in Neonatal Rat Hippocampal Slices

Objective(s) Bupropion is an atypical antidepressant that is widely used in smoke cessation under FDA approval. The study of synaptic effects of bupropion can help to finding out its mechanism(s) for stopping nicotine dependence. In this study the effects of perinatal bupropion on the population spike (PS) amplitude of neonates were investigated. Materials and Methods Hippocampal slices were...

متن کامل

تاثیر بوپروپیون روی دامنهpopulation spike در مقاطع زنده هیپوکامپ موش بزرگ آزمایشگاهی

 Received: 7 April, 2009 Accepted: 17 June, 2009AbstractBackground & Aims: Antidepressants are very common therapeutic agents in medicine. Design and using new antidepressants have built a new scope for depression treatment. Bupropion is an atypical antidepressant but it is used as an anti-smoke agent widely due to its smoke cessation. Its effectiveness in producing smoking cessation seems inde...

متن کامل

Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons.

Pyramidal cells and interneurons in rat prefrontal cortical slices exhibit subthreshold oscillations when depolarized by constant current injection. For both types of neurons, the frequencies of these oscillations for current injection just below spike threshold were 2--10 Hz. Above spike threshold, however, the subthreshold oscillations in pyramidal cells remained low, but the frequency of osc...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2003